Instructions

- 1. This question paper has forty multiple choice questions.
- 2. Four possible answers are provided for each question and only one of these is correct.
- 3. Marking scheme: Each correct answer will be awarded 2.5 marks, but 0.5 marks will be **deducted** for each incorrect answer.
- 4. Answers are to be marked in the OMR sheet provided.
- 5. For each question, darken the appropriate bubble to indicate your answer.
- 6. Use only HB pencils for bubbling answers.
- 7. Mark only one bubble per question. If you mark more than one bubble, the question will be evaluated as incorrect.
- 8. If you wish to change your answer, please erase the existing mark completely before marking the other bubble.
- 9. Let \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} denote the set of natural numbers, the set of integers, the set of rational numbers, the set of real numbers and the set of complex numbers respectively.
- 10. Let S_n denote the group of permutations of $\{1, 2, \dots, n\}$ and \mathbb{Z}_n the group $\mathbb{Z}/n\mathbb{Z}$.
- 11. Let $f: X \to Y$ be a function. For $A \subset X$, f(A) denotes the image of A under f.

Integrated Ph. D. Mathematical Sciences

1. Consider the following system of linear equations.

$$x + y + z + w = b_1.$$

$$x - y + 2z + 3w = b_2.$$

$$x - 3y + 3z + 5w = b_3.$$

$$x + 3y - w = b_4.$$

For which of the following choices of b_1, b_2, b_3, b_4 does the above system have a solution?

- (A) $b_1 = 1, b_2 = 0, b_3 = -1, b_4 = 2.$ (B) $b_1 = 2, b_2 = 3, b_3 = 5, b_4 = -1.$ (A) $b_1 = 2, b_2 = 2, b_3 = 3, b_4 = 0.$ (A) $b_1 = 2, b_2 = -1, b_3 = -3, b_4 = 3.$
- 2. Let $y: [0,1] \to \mathbb{R}$ be a twice continuously differentiable function such that,

$$\frac{d^2y}{dx^2}(x) - y(x) < 0, \text{ for all } x \in (0,1), \text{ and } y(0) = y(1) = 0.$$

Then,

- (A) y has at least two zeros in (0, 1).
- (B) y has at least on zero in (0, 1).
- (C) y(x) > 0 for all $x \in (0, 1)$.
- (D) y(x) < 0 for all $x \in (0, 1)$.
- 3. Which one of the following boundary value problems has more than one solution?
 - (A) y'' + y = 1, y(0) = 1, $y(\pi/2) = 0$. (B) y'' + y = 1, y(0) = 0, $y(2\pi) = 0$. (C) y'' - y = 1, y(0) = 0, $y(\pi/2) = 0$. (D) y'' - y = 1, y(0) = 0, $y(\pi) = 0$.
- 4. Let A be an $n \times n$ nonsingular matrix such that the elements of A and A^{-1} are all integers. Then, 3

- (A) $\det A$ must be a positive integer.
- (B) $\det A$ must be a negative integer.
- (C) det A can be +1 or -1.
- (D) det A must be +1.
- 5. Let Q be a polynomial of degree 23 such that Q(x) = -Q(-x) for all $x \in \mathbb{R}$ with $|x| \ge 10$. If $\int_{-1}^{1} (Q(x) + c) dx = 4$ then c equals
 - (A) 0.
 - (B) 1.
 - (C) 2.
 - (D) 4.
- 6. Let b > 0 and $x_1 > 0$ be real numbers. Then the sequence $\{x_n\}_{n=1}^{\infty}$ defined by

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{b}{x_n} \right)$$

- (A) diverges.
- (B) converges to $\sqrt{x_1}$.
- (C) converges to $\sqrt{(b+x_1)}$.
- (D) converges to \sqrt{b} .
- 7. Let $f(x) = \begin{cases} \frac{3x}{4} & \text{if } x \in \mathbb{Q}.\\ \sin x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

Then the number of points where f is continuous equals

- (A) 1.
- (B) 2.
- (C) 3.
- (D) ∞ .
- 8. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying, $f(x) = 5 \int_0^x f(t) dt + 1$, $\forall x \in \mathbb{R}$. Then f(1) equals
 - (A) e^5 .
 - (B) 5.
 - (C) 5e.

- (D) 1.
- 9. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and let $g(x) = \int_0^{x^2+3x+2} f(t) dt$. Then, g'(0) equals
 - (A) 3f(2).
 - (B) f(2).
 - (C) 3f(0).
 - (D) f(0).
- 10. Let $x_n > 0$ be such that $\sum_{n=1}^{\infty} x_n$ diverges and $\sum_{n=1}^{\infty} x_n^2$ converges. Then x_n cannot be
 - (A) $\frac{n}{n^2+1}$. (B) $\frac{\log n}{n}$. (C) $\frac{1}{n\sqrt{\log n}}$. (D) $\frac{1}{n(\log n)^2}$.
- 11. If B is a subset of \mathbb{R}^3 and $u \in \mathbb{R}^3$, define $B u = \{w u : w \in B\}$. Let $A \subset \mathbb{R}^3$, be such that $tu + (1 t)v \in A$ whenever $u, v \in A$ and $t \in \mathbb{R}$. Then,
 - (A) A must be a straight line.
 - (B) A must be a line segment.
 - (C) $A u_0$ is a subspace for a unique $u_0 \in A$.
 - (D) A u is a subspace for all $u \in A$.

12. Minimum value of |z+1| + |z-1| + |z-i| for $z \in \mathbb{C}$ is

- (A) 2.
- (B) $2\sqrt{2}$.
- (C) $1 + \sqrt{3}$.
- (D) $\sqrt{5}$.
- 13. The minimum value of |z-w| where $z, w \in \mathbb{C}$ such that |z| = 11, and |w+4+3i| = 5 is
 - (A) 1.
 - (B) 2.
 - (C) 5.

(D) 6.

- 14. Let \mathcal{P} be the vector space of polynomials with real coefficients. Let T and S be two linear maps from \mathcal{P} to itself such that $T \circ S$ is the identity map. Then,
 - (A) $S \circ T$ may not be the identity map.
 - (B) $S \circ T$ must be the identity map, but T and S need not be the identity maps.
 - (C) T and S must both be the identity map.
 - (D) There is a scalar α such that $T(p) = \alpha p$ for all $p \in \mathcal{P}$.
- 15. Let ℓ_1 and ℓ_2 be two perpendicular lines in \mathbb{R}^2 . Let P be a point such that the sum of the distances of P from ℓ_1 and ℓ_2 equals 1. Then the locus of P is
 - (A) a square.
 - (B) a circle.
 - (C) a straight line.
 - (D) a set of four points.
- 16. Let 0 < b < a. A line segment AB of length b moves on the plane such that A lies on the circle $x^2 + y^2 = a^2$. Then the locus of B is
 - (A) a circle.
 - (B) union of two circles.
 - (C) a region bounded by two concentric circles.
 - (D) an ellipse, but not a circle.
- 17. Let u, v and w be three vectors in \mathbb{R}^3 . It is given that $u \cdot u = 4, v \cdot v = 9, w \cdot w = 1, u \cdot v = 6, u \cdot w = 0$ and $v \cdot w = 0$. Then the dimension of the subspace spanned by $\{u, v, w\}$ is
 - (A) 1.
 - (B) 2.
 - (C) 3.
 - (D) cannot be determined.
- 18. Let a_n be the number of ways of arranging n identical black balls and 2n identical white balls in a line so that no two black balls are next to each other. Then a_n equals
 - (A) 3n.

(B) $\binom{2n+1}{n}$. (C) $\binom{2n}{n}$. (D) $\binom{2n-1}{n(2n+1)}$.

19. Maximal area of a triangle whose vertices are on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

(A) $\frac{3\sqrt{3}}{4}ab.$ (B) $\frac{3\sqrt{3}}{4}\frac{(a^2+b^2)}{2}.$ (C) $\frac{3\sqrt{3}}{4}\frac{2}{\frac{1}{a^2}+\frac{1}{b^2}}.$ (D) $\frac{3\sqrt{3}}{4}.$

20. Let $a_k = \frac{1}{2^{2k}} \binom{2k}{k}$, $k = 1, 2, 3, \cdots$. Then

- (A) a_k is increasing.
- (B) a_k is decreasing.
- (C) a_k decreases for first few terms and then increases.
- (D) none of the above.

21. What is the limit of $(2^n + 3^n + 4^n)^{\frac{1}{n}}$ as $n \to \infty$?

- (A) 0.
- (B) 1.
- (C) 3.
- (D) 4.

22. What is the limit of $e^{-2n} \sum_{k=0}^{n} \frac{(2n)^k}{k!}$ as $n \to \infty$?

- (A) 0.
- (B) 1.
- (C) 1/e.
- (D) e.
- 23. Let $f, g: [-1, 1] \to \mathbb{R}$ be odd functions whose derivatives are continuous. You are given that |g(x)| < 1 for all $x \in [-1, 1]$, f(-1) = -1, f(1) = 1 and that f'(0) < g'(0). Then the minimum possible number of solutions to the equation f(x) = g(x) in the interval [-1, 1] is

- (A) 1.
- (B) 3.
- (C) 5.
- (D) 7.
- 24. Let $f: S_3 \to \mathbb{Z}_6$ be a group homomorphism. Then the number of elements in $f(S_3)$ is
 - (A) 1.
 - (B) 1 or 2.
 - (C) 1 or 3.
 - (D) 1 or 2 or 3.
- 25. Consider the multiplicative group $S = \{z : |z| = 1\} \subset \mathbb{C}$. Let G and H be subgroups of order 8 and 10 respectively. If n is the order of $G \cap H$ then
 - (A) n = 1.
 - (B) n = 2.
 - (C) $3 \le n \le 5$.
 - (D) $n \ge 6$.
- 26. Let G be a finite abelian group. Let H_1 and H_2 be two distinct subgroups of G of index 3 each. Then the index of $H_1 \cap H_2$ in G is
 - (A) 3.
 - (B) 6.
 - (C) 9.
 - (D) Cannot be computed from the given data.
- 27. A particle follows the path $c : [-\frac{\pi}{2}, \frac{\pi}{2}] \to \mathbb{R}^3$, $c(t) = (\cos t, 0, |\sin t|)$. Then the distance travelled by the particle is
 - (A) $\frac{3\pi}{2}$.
 - (B) π .
 - (C) 2π .
 - (D) 1.

28. Let $T : \mathbb{R}^3 \to \mathbb{R}^4$ be the map given by

$$T(x_1, x_2, x_3) = (x_1 - 2x_2, x_2 - 2x_3, x_3 - 2x_1, x_1 - 2x_3).$$

Then the dimension of $T(\mathbb{R}^3)$ equals

- (A) 1.
- (B) 2.
- (C) 3.
- (D) 4.

29. The tangent plane to the surface $z^2 - x^2 + \sin(y^2) = 0$ at (1, 0, -1) is

- (A) x y + z = 0.(B) x + 2y + z = 0.(C) x + y - 1 = 0.(D) x + z = 0.
- 30. Let A and B be two 3×3 matrices with real entries such that rank $(A) = \operatorname{rank}(B) =$ 1. Let N(A) and R(A) stand for the null space and range space of A. Define N(B) and R(B) similarly. Then which of the following is necessarily true ?
 - (A) $\dim(N(A) \cap N(B)) \ge 1.$
 - (B) $\dim(N(A) \cap R(A)) \ge 1.$
 - (C) $\dim(R(A) \cap R(B)) \ge 1.$
 - (D) $\dim(N(A) \cap R(A)) \ge 1.$
- 31. For a permutation π of $\{1, 2, \dots, n\}$, we say that k is a fixed point if $\pi(k) = k$. Number of permutations in S_5 having exactly one fixed point is
 - (A) 24.
 - (B) 45.
 - (C) 60.
 - (D) 96.
- 32. Let $A = \{1, 2, \dots, 10\}$. If S is a subset of A, let |S| denote the number of elements in S. Then

$$\sum_{S \subset A, S \neq \phi} \; (-1)^{|S|}$$

equals

- (A) -1.
- (B) 0.
- (C) 1.
- (D) 10.
- 33. Let \mathcal{P}_m be the vector space of polynomials with real coefficients of degree less than or equal to m. Define $T : \mathcal{P}_m \to \mathcal{P}_m$ by T(f) = f' + f. Then the dimension of range(T) equals
 - (A) 1
 - (B) (m-1).
 - (C) m.
 - (D) (m+1).
- 34. Let A and B be two finite sets of cardinality 5 and 3 respectively. Let G be the collection of all mappings f from A into B such that the cardinality of f(A) is 2. Then, cardinality of G equals
 - (A) $3 \cdot 2^5 6$.
 - (B) $3 \cdot 2^5$.
 - (C) $3 \cdot 5^2$.
 - (D) $\frac{1}{2}(3^5 3)$.
- 35. Let G be the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ and let H be the collection of all isomorphisms from G onto itself. Then the cardinality of H is
 - (A) 2.
 - (B) 4.
 - (C) 6.
 - (D) 8.
- 36. A line L in the XY-plane has intercepts a and b on X-axis and Y-axis respectively. When the axes are rotated through an angle θ (keeping the origin fixed), L makes equal intercepts with the axes. Then $\tan \theta$ equals
 - (A) $\frac{a-b}{a+b}$. (B) $\frac{a-b}{2(a+b)}$. (C) $\frac{a+b}{a-b}$.

- (D) $\frac{a^2 b^2}{a^2 + b^2}$.
- 37. Let B_1, B_2 and B_3 be three distinct points on the parabola $y^2 = 4x$. The tangents at B_1, B_2 and B_3 to the parabola (taken in pairs) intersect at C_1, C_2 and C_3 . If a and A are the areas of the triangles $B_1B_2B_3$ and $C_1C_2C_3$ respectively, then
 - (A) a = A.
 - (B) a = 2A.
 - (C) 2a = A.
 - (D) $a = \sqrt{2}A$.
- 38. Let P be a 3×2 matrix, Q be a 2×2 matrix and R be a 2×3 matrix such that PQR is equal to the identity matrix. Then,
 - (A) rank of P = 2.
 - (B) Q is nonsingular.
 - (C) Both (A) and (B) are true.
 - (D) There are no such matrices P, Q and R.
- 39. The number of elements of order 3 in the group $\mathbb{Z}_{15} \times \mathbb{Z}_{15}$ is
 - (A) 3.
 - (B) 8.
 - (C) 9.
 - (D) 15.
- 40. The number of surjective group homomorphisms from \mathbb{Z} to \mathbb{Z}_3 equals
 - (A) 1.
 - (B) 2.
 - (C) 3.
 - (D) ∞ .